If it's not what You are looking for type in the equation solver your own equation and let us solve it.
96+y^2=4y+96
We move all terms to the left:
96+y^2-(4y+96)=0
We get rid of parentheses
y^2-4y-96+96=0
We add all the numbers together, and all the variables
y^2-4y=0
a = 1; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·1·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*1}=\frac{0}{2} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*1}=\frac{8}{2} =4 $
| 5+7x4/8=0 | | 2x+7x-18=13x+122 | | 17=9+m | | 12x-39=60 | | 3x-3=38.4 | | 1.08^x=100 | | 5e=1+4e+4 | | y=315.000(1.2)^20 | | 125^x+5^3x+1=200 | | 2a-22.7=24 | | -64=4n-8 | | 0.7-0.2x=5.5 | | 5x+10+70+45=180 | | (X+2)^2+9(x+2)+18=0 | | 0.5s+6=23 | | -3-5x=-23 | | 2=(1/2)(7x+2) | | (8x-2)+(4x-10)=180 | | 128=(2y+20) | | 3r+2=4r+4 | | 0.25=i/3 | | 3(x)=6x-20 | | 29+(x+5)=180 | | -8x+4=5x-5 | | 3(-4x-)-2x+4=43 | | (8x+9)=(7x+30) | | (9x+4)+(2x+22)=180 | | 5x-2=4+1 | | 12x+10=52 | | -2x+11=3x+1 | | 45+3x+6=4x+1 | | 3x+6+4x+1=45 |